Monday, November 7, 2016

Tugas 4 : Contoh Kasus IRR dan NPV


IRR (internal rate of return)
IRR (internal rate of return) : merupakan suku bunga yang akan menyamakan jumlah nilai sekarang dari penerimaan yang diharapkan diterima (present value of future proceed) dengan jumlah nilai sekarang dari pengeluaran untuk investasi.
Besarnya nilai sekarang dihitung dengan menggunakan pendekatan sebagai berikut:
Bila suatu investasi mempunyai arus kas sebagaimana ditunjukkan dalam tabel berikut  :




















Kemudian IRR {\displaystyle r} {\displaystyle r} dihitung dari :








 Dalam kasus ini hasilnya adalah 14.3%.


Contoh Kasusnya  :
Aplikasi IRR, arus kas setiap tahun jumlahnya sama.

Soal 1 :

Suatu pabrik mempertimbangkan ususlan investasi sebesar Rp. 130.000.000 tanpa nilai sisa dapat menghasilkan arus kas per tahun Rp. 21.000.000 selama 6 tahun. Diasumsikan RRR sebesar 13 %, hitunglah IRR!
Dicoba dengan faktor diskonto 10 %...
NPV = (Arus kas x Faktor Diskonto) - Investasi Awal
NPV = (21.000.000 x 5.8979) - 130.000.000
NPV = Rp 659.000,00
Dicoba dengan faktor diskonto 12 %
NPV =  (Arus kas x Faktor Diskonto) - Investasi Awal
NPV = (21.000.000 x 5,7849 ) - 130.000.000
NPV =  RP -6.649.000,00

(Karena NPV mendekati nol, yaitu Rp. 659.000,00 dan -Rp. 6.649.000,00.)
Artinya tingkat diskonto antara 10% sampai 12%, untuk menentukan ketepatannya dilakukan Interpolasi sbb :


IRR = 10% + (659.000/7.308.000) x 2%
IRR = 10,18%

Kesimpulan :
Proyek investasi sebaiknya ditolak,
Karena IRR < 13 %
Aplikasi IRR, arus kas setiap tahun jumlahnya tidak sama.


Soal 2 :

Perusahan Zamanria sedang mempertimbangkan suatu usulan proyek investasi senilai Rp. 150.000.000, umur proyek diperkirakan 5 tahun tanpa nilai sisa. Arus kas yang dihasilkan :
Tahun 1 adalah Rp. 60.000.000
Tahun 2 adalah Rp. 50.000.000
Tahun 3 adalah Rp. 40.000.000
Tahun 4 adalah Rp. 35.000.000
Tahun 5 adalah Rp. 28.000.000

Jika diasumsikan RRR = 10 % berapakah IRR?

Jawab :
Dicoba dengan faktor diskonto 16%
Tahun 1 arus kas = Rp.60.000.000 x 0,8621 = Rp.51.726.000
Tahun 2 arus kas = Rp.50.000.000 x 0,7432 = Rp37.160.000
Tahun 3 arus kas = Rp.40.000.000 x 0,6417 = Rp25.668.000
Tahun 4 arus kas = Rp.35.000.000 x 0,5523 = Rp19.330.500
Tahun 5 arus kas = Rp.28.000.000 x 0,6419  = Rp17.973.200
___________________________________________________+

­­­­­­­­­­­­
Total PV                                                        = Rp100.131.700
Investasi Awal                                               = Rp150.000.000
Net Present Value                                          =  Rp-49.868.300

Dicoba dengan faktor diskonto 10%
Tahun 1 arus kas = Rp.60.000.000 x 0,9090 = Rp54.540.000
Tahun 2 arus kas = Rp.50.000.000 x 0,8264 = Rp 41.320.000
Tahun 3 arus kas = Rp.40.000.000 x 0,7513 = Rp30.052.000
Tahun 4 arus kas = Rp.35.000.000 x 0,6830 = Rp23.905.000
Tahun 5 arus kas = Rp.28.000.000 x 0,6209 = Rp17.385.200
____________________________________________________+

Total PV                                                       = Rp167.202.200
Investasi Awal                                              = Rp150.000.000
Net Present Value                                        = Rp   17.202.200

Perhitungan interpolasi :


IRR = 10% + (Rp.17.202.200/Rp. 67.070.500) x 6 %
IRR = 11,5388 %

Kesimpulan :
Usulan proyek investasi tersebut sebaiknya diterima, karena IRR > 10%





Net Present Value (NPV)
(NPV) Net Present Value : merupakan selisih antara pengeluaran dan pemasukan yang telah didiskon dengan menggunakan social opportunity cost of capital sebagai diskon faktor, atau dengan kata lain merupakan arus kas yang diperkirakan pada masa yang akan datang yang didiskontokan pada saat ini. Untuk menghitung NPV diperlukan data tentang perkiraan biaya investasi, biaya operasi, dan pemeliharaan serta perkiraan manfaat/benefit dari proyek yang direncanakan.  Jadi perhitungan NPV mengandalkan pada teknik arus kas yang didiskontokan.

Menurut  Kasmir  (2003:157) Net Present Value (NPV) atau nilai bersih sekarang merupakan perbandingan antara PV kas bersih dengan PV Investasi selama umur investasi. Sedangkan menurut Ibrahim (2003:142) Net Present Value (NPV) merupakan net benefit   yang telah di diskon dengan menggunakan  social opportunity cost of capital (SOCC) sebagai discount factor.
Arus kas masuk dan keluar yang didiskontokan pada saat ini (present value PV), yang dijumlahkan sama masa hidup dari proyek tersebut dihutung dengan rumus :



      t      = waktu  arus kas
      i      = arus suku bunga diskonto yang digunakan
    Rt     = arus kas bersih (the net cash flow) dalam waktu t

Contoh soal

A pada hari ini mendapat pinjaman dari B sebanyak Rp 100 juta yang ingin saya investasikan selama satu tahun. Ada 3 pilihan bagi saya untuk menanamkan uang saya tersebut, yaitu :
1.      Deposito 12 bulan dengan bunga 8% per tahun,
2.      Beli rumah lalu dikontrakkan Rp 10 jt/thn untuk kemudian semoga bisa dijual di akhir tahun dengan harga Rp 150 juta,
3.      Beli emas sekarang dan dijual akhir tahun.
Agar dapat lebih mudah memilih investasi yang paling menguntungkan, A ingin tahu berapa sih nilai sekarang dari hasil investasi untuk masing-masing pilihan? Atau dengan kata lain, berapa rupiahkan uang yang akan A terima dari masing-masing pilihan investasi seandainya hasil investasi tsb A terima sekarang, bukannya satu tahun kedepan?NPV digunakan untuk menjawab pertanyaan ini.
NPV merupakan hasil penjumlahan PV pengeluaran untuk investasi dan PV penerimaan dari hasil investasi.

Rumus untuk menghitung Present Value adalah :

                        PV = C1 / (1 + r)
                        Dimana :
                              C1 = Uang yang akan diterima di tahun ke-1.
                 r     = Discount rate/ opportunity cost of capital.Tingkat pengembalian/hasil investasi
                        (%) dari investasi yang sebanding.


Sedangkan rumus untuk menghitung NPV adalah :

                                    NPV = C0 + ( C1 / (1 + r))
                        Dimana C0 = Jumlah uang yang diinvestasikan (karena ini adalah pengeluaran, maka menggunakan bilangan negatif).

Untuk menghitung NPV Deposito, saya menggunakan discount rate (r) sebesar 4 %. Angka ini saya ambil dari tingkat bunga tabungan.
Jadi ,
                        NPV Deposito    = (-100 jt) + (108 jt / ( 1 + 0,04 ))
                                    = (- 100 juta) + 103,85 juta
                                    = 3,85 juta
            Lumayan juga nih hasilnya.

Untuk menghitung NPV Rumah, saya gunakan discount rate 12 % untuk mengakomodasi tingkat risiko.
                        NPV Rumah   = (- 100 jt + 10 jt) + (150 jt / ( 1 + 0,12))
                                                = ( - 90 jt) + 133,93 jt
                                    = 43,93 jt
            Wow, makin kaya aja keliatannya.

Untuk menghitung NPV Emas, discount rate-nya 0 %, karena emas meskipun berfungsi sebagai store of value / alat penyimpan kekayaan, emas tidak memberikan hasil.
NPV Emas = (- 100 jt) + ( 100 Jt / (1 + 0,00)) = 0 jt

                        Untuk berikutnya mari ita coba menghitung harga emas 10 tahun kemudian:
Harga Oktober 1998 adalah USD 300/oz dan harga Oktober 2008 adalah USD 900/oz.
Dengan penghitungan sederhana, saya peroleh rata-rata kenaikan harga emas adalah 20%/thn.
Jadi penghitungan ulang untuk NPV Emas adalah :

                         NPV Emas  = ( -100 jt) + (120 jt / (1+0,00))
                                             = (- 100 jt) + 120 jt
                                             = 20 jt


Sumber :

https://id.wikipedia.org/wiki/IRR

https://id.wikipedia.org/wiki/NPV

http://diceritaken.blogspot.co.id/2013/05/interest-rate-return.html

http://easylearn2010.blogspot.co.id/2011/10/net-present-value-npv.html

TUGAS 3 EKONOMI TEKNIK : NILAI EKIVALENSI



NILAI EKIVALENSI






NAMA    : STEFANUS YUS TAUFANI
KELAS   : 3IB06
NPM        : 1A414449






NILAI EKIVALENSI

Pengertian Ekivalensi

Nilai uang yang berbeda pada waktu yang berbeda akan tetapi secara finansial mempunyai nilai yang sama. Kesamaan nilai finansial tersebut dapat ditunjukkan jika nilai uang dikonversikan (dihitung) pada satu waktu yang sama.

Nilai Ekivalen

Sejumlah uang pada waktu tertentu dikatakan ekivalen dengan sejumlah uang yang lain pada waktu yang lain, bila nilai nominalnya berbeda, tetapi nilai efektifnya sama. Suatu rancangan teknis atau rencana investasi mengandung sejumlah transaksi, baik penerimaan maupun pengeluaran dalam berbagai bentuk, selama masa pakai atau masa operasi. Semua jenis transaksinya ini harus diekivalensikan dulu ke salah satu transaksi dasar. Umumnya diubah ke transaksi sama rata setiap tahun atau transaksi tunggal di awal jangka waktu analisa.
Dalam proses ekivalensi nilai ini digunakan MARR (minimum attractive rate of return) sebagai suku bunga analisa. Besarnya MARR ini tergantung dari: laju inflasi, sukubunga bank, peluang dan resiko usaha.

Pada nilai ekivalensi istilah-istilah yang digunakan adalah:
Pv        = Present Value (Nilai Sekarang)     
Fv        = Future Value (Nilai yang akan datang)  
An        = Anuity
I           = Bunga (i = interest / suku bunga)
N         = Tahun ke-
P0        = pokok/jumlah uang yg dipinjam/dipinjamkan pada periode waktu

SI        = Simple interest dalam rupiah

A. Present Value (Nilai Sekarang)

Nilai Sekarang (present value) adalah nilai sekarang dari satu jumlah uang/satu seri pembayaran yang akan datang, yang dievaluasi dengan suatu tingkat bunga tertentu. Metode perhitungan PV dapat dirumuskan seperti dibawah ini;

                                                                    PV = FV / [1+i]n

dimana:
FV       = Nilai yang akan datang;
i           = suku bunga;
n          = jumlah tahun.

Contoh Soal:
Seorang teknisi elektronika membuat tabungan untuk dia membuat alat baru dalam waktu 5 tahun. Dengan memperhatikan suku bunga 15% berapa jumlah uang yang harus ia tabung agar memdapatkan uang sebesar Rp.80.000.000,-?

Penyelesaian:
PV = FV / [1+i]n
PV = 80.000.000 / [1+15%]5
PV = 80.000.000 / 2,011
PV = Rp 160.908.575,-

B. Future Value (Nilai yang akan datang)
            Future value (terminal value) adalah nilai uang yang akan datang dari satu jumlah uang atau suatu seri pembayaran pada waktu sekarang, yg dievaluasi dengan suatu tingkat bunga tertentu. Metode prhitungan FV dapat dirumuskan seperti dibawah ini ;

FV = PV [1+i]n

dimana:
PV       = Nilai sekarang;
i           = suku bunga;
n          = jumlah tahun.
Contoh soal:
Profesor Agasa memperhitungkan 10 tahun kedepan dana yang ada untuk penelitiannya. Apabila ia menginvestasikan uangnya saat ini dengan tingkat suku bunga sebesar 15%. Berapa uang yang ia punya kedepannya dengan investasi awal Rp 50.000.000,-?

Penyelesaian:
FV = PV [1+i]n
FV = 50.000.000 [1+15%]10
FV = 50.000.000 [ 4,045]
FV = Rp 202.277.886,-


C. Annuity

            Annuity adalah suatu rangkaian pembayaran uang dalam jumlah yang sama yang terjadi dalam periode waktu tertentu. Annuity dapat dibagi menjadi dua yaitu annuity nilai sekarang dan annuity nilai masa datang.


Anuitas nilai sekarang adalah sebagai nilai anuitas majemuk saat ini dengan pembayaran atau penerimaan periodik dan sebagai jangka waktu anuitas.

                                                   PVAn = A [(S (1+i)n ] = A [ 1 – {1/ (1+ i)n /i } ]

Anuitas nilai masa datang adalah sebagai nilai anuaitas majemuk masa depan dengan pembayaran atau penerimaan periodik dan n sebagai jangka waktu anuitas.

FVAn = A [(1+i)n – 1 ] / i

Contoh soal: 
           
Seorang pelajar mengidentifikasi teknologi 4G yang dapat dikembangkan lagi agar menjadi lebih cepat. Alat itu membutuhkan dana sebesar Rp 20.000.000,- yang dapat diangsur 15 tahun. Dengan suku bunga 10% berapa uang yang ia sediakan setiap tahunnya?
Penyelesaian:

FV = A [(1+i)n-1] / i
A = [FV] [i] / [(1+i)n-1]
A = [20.000.000] [10%] / [(1+10%)15-1]
A = [2.000.000] / [3,177]
A= Rp 629.525,-

Penyelesaian:

FV = A [(1+i)n-1] / i
A = [FV] [i] / [(1+i)n-1]
A = [20.000.000] [10%] / [(1+10%)15-1]
A = [2.000.000] / [3,177]
A= Rp 629.525,-





D. Bunga (Interest)           

             Bunga adalah uang yang dibayarkan atau dihasilkan dari penggunaan uang. Bunga dapat dibagi menjadi dua yaitu Simple Interest dan Compound Interest.
Simple Ineterst / SI (Bunga Sederhana) adalah bunga yang dibayarkan/dihasilkan hanya dari jumlah uang mula-mula atau pokok pinjaman yang dipinjamkan atau dipinjam. Dapat dituliskan:

                                                                                           SI = P0(i)(n)

Contoh soal:
           Rendi adalah mahasiswa yang menginvestasikan uangnnya untuk keperluan kuliah selama 4 tahun. Jika ia berinvestasi sebesar Rp.400.000,- dengan suku bunga sebesar 10%, berapakah bunga yang akan didapat mahasiswa tersebut?

Penyelesaian:
SI = Po (i) (n)
SI = 400.000 (10%) (4)
SI = Rp 160.000,-

Compound Interest (Bungan Berbunga) Adalah bunga yang dibayarkan/dihasilkan dari bunga yang dihasilkan sebelumnya, sama seperti pokok yang dipinjam/dipinjamkan.

E. Waktu (n) dan Investasi Awal (Po)
               Istilah lainnya yaitu n menunjukan waktu dalam rumusan perhitungan present value, future value, interest, maupun annuity. Waktu ini sangat penting karena menyangkut lamanya investasi berjalan dan sebagai acuan untuk perhitungan keuntungan dari hasil investasi tersebut.

Contoh soal:
Seorang pengusaha menginvestasikan uangnya sebesar Rp.20.000.000,- jika pengusaha tersebut menginginkan agar uangnya menjadi Rp.62.116.000,- berapa lama ia harus menginvestasikan uangnya dengan mempertimbangkan suku bunga sebesar 12% ?

Penyelesaian:

Dalam hal ini kita dapat menggunakan rumus future value:
FV = PV  [1+i]n
62.116.000 = 20.000.000 [1+12%]n
3,1083 = [1,12]n
n = 1,12log 3,1083
n = 10

         jadi pengusaha tersebut harus menginvestasikan uangnya selama 10 tahun untuk mendapatkan hasil yang diinginkan.

         Istilah berikutnya adalah Po atau investasi awal. Investasi awal akan sangat menentukan hasil dari investasi yang kelak akan didapatkan. Untuk menentukan investasi awal juga perlu memperhatikan suku bunga dan lamanya waktu berinvestasi. Dalam rumus perhitungan, Po biasanya akan dihitung bersamaan untuk menentukan bunga sederhana atau Simple Interest.

Contoh soal:
Seseorang mendapatkan bunga sebesar Rp 1.000.000,- dari hasil investasinya. Dengan suku bunga sebesar 10% dan waktu insesatasi selama 8 tahun, tentukanlah investasi awal yang diberikan oleh orang tersebut?

Penyelesaian:
SI = Po [i] [n]
1.000.000 = Po [10%] [8]
Po = 1.000.000 / 0,8
Po = Rp 1.250.000,-


Metode Ekivalensi
Adalah metode yang digunakan dalam menghitung kesamaan atau kesetaraan nilai uang waktu berbeda.
Nilai ekivalensi dari suatu nilai uang dapat dihitung jika diketahui 3 hal :
·         Jumlah uang pada suatu waktu
·          Periode waktu yang ditinjau
·         Tingkat bunga yang dikenakan
Perhitungan Ekivalensi
Nilai Ekivalensi Pengeluaran = Nilai Ekivalensi Penerimaan
Contoh:
                Hari ini budi menabung di bank sebesar Rp 10.000. dua dan empat tahun kemudian ditabungnya lagi masing-masing sejumlah Rp 5.000. maka jumlah uang tabungannya pada tahun ke 7 dar hari ini bila suku bunga i =10 % adalah sebesar Rp 34.195

Rumus-Rumus Bunga Majemuk dan Ekivalensinya
Notasi yang digunakan dalam rumus bunga yaitu :
i (interest)                    = tingkat suku bunga per periode                           
n (Number)                  = jumlah periode bunga
P (Present Worth)       = jumlah uang/modal pada saat sekarang (awal periode/tahun)
F (Future Worth)         = jumlah uang/modal pada masa mendatang (akhir periode/tahun)
A (Annual Worth)       = pembayaran/penerimaan yang tetap pada tiap periode/tahun
G (Gradient)               = pembayaran/penerimaan dimana dari satu periode ke periode berikutnya
    terjadi penambahan atau pengurangan yang besarnya sama

Single Payment
                Single payment disebut cash flow tunggal dimana sejumlah uang ini sebesar “P” (present) dijinjamkankan kepada seseorang dengan suku bunga sebesar “i” (interest) pada suatu periode “n”, maka jumlah yang harus dibayar sesuai uang pada periode “n” sebesar “F” (future). Nilai “F” akan di ekivalensi dengan “P” saat ini pada suku bunga “i”.
Dengan rumus :


Jika dibalik, misalnya F diketahui dan P yang dicari maka hubungan persamaannya menjadi:




Annual Cash Flow (Uniform Series Payment)

            Metode annual cash flow diaplikasikan untuk suatu pembayaran yang sama besarnya tiap periode untuk jangka waktu yang lama, seperti mencicil rumah, mobil, motor dan lainya. Grafik annual cash flow di gambarkan dalam bentuk grafik dibawah ini:

Hubungan annual dan future
                Dengan menguraikan bentuk annual dengan tunggal (single)dan selanjutnya masing-masingnya itu diasumsikan sebagai suatu yang terpisah dan dijumlahkan dengan menggunakan persamaan sebelumnya. Maka akan diperoleh rumus:


Hubungan future dengan annual :

Hubungan annual dengan present (P)
     Jika sejumlah uang present didistribusikan secara merata setiap periode akan diperoleh besaran ekuilaven sebesar “A”, yaitu:


Hubungan present (P) dengan annual (A)




Pembayaran Tunggal
                Pembayaran dan penerimaan uang masing-masing dibayarkan sekaligus pada awal atau akhir suatu periode,
   1.      Present Worth Analysis
Nilai sejumlah uang pada saat sekarang yang merupakan ekivalensi dari sejumlah Cash Flow
(aliran kas) tertentu pada periode tertentu dengan tingkat suku bunga (i) tertentu.

Kegunaan : Untuk mengetahui analisis sejumlah uang pada waktu sekarang
Berapa modal P yang harus diinvestasikan pada saat sekarang (t=0), dengan tingkat suku
bunga (i) %, per tahun, sehingga pada akhir n periode didapat uang sebesar F rupiah.
Rumus:

                 P = F 1/(1+i)N     atau   P = F (P/F, i, n)

Contoh:
Seseorang memperhitungkan bahwa 15 tahun yang akan datang anaknya yang sulung akan masuk perguruan tinggi, untuk itu diperkirakan membutuhkan biaya sebesar Rp 35.000.000,00. Bila tingkat bunga adalah 5 %, maka berapa ia harus menabungkan uangnya sekarang?
Jawab:
F = 35.000.000,00 ; i = 5 % ; n = 15
P = (35.000.000) (P/F, 5, 15)
   = (35.000.000) (0,4810) 
               = Rp 16.835.000,00
    2.      Future Worth Analysis
Nilai sejumlah uang pada masa yang akan datang, yang merupakan konversi dari sejumlah aliran kas dengan tingkat suku bunga tertentu.

           Kegunaan : Untuk mengetahui analisis sejumlah uang pada waktu yang akan dating
Bila modal sebesar P rupiah diinvestasikan sekarang (t = 0), dengan tingkat bunga i %, dibayar per periode selama n periode, berapa jumlah uang yang akan diperoleh pada periode terakhir?
Rumus:   
                     P = F 1/(1+i)N     atau   P = F (P/F, i, n)
Contoh:
Seorang pemuda mempunyai uang sebesar Rp 20.000.000, di investasikan dibank 6 % dibayar per periode selama 5 tahun. Berapakah jumlah uang yang akan diperoleh setiap tahunnya ?
Jawab:
P = Rp 20.000.000,00; i = 6 % ; n = 5
F = P (1+i)N
   = Rp 20.000.000 (1 + 0,06)5
Atau
F = P (F/P, i, n)
   = (Rp 20.000.000) X (1,338)
   = Rp 26.760.000,00



   3.      Annual Worth Analysis
Sejumlah serial Cash Flow (aliran kas) yang nilainya seragam setiap periodenya. Nilai tahunan diperoleh dengan mengkonversikan seluruh aliran kas kedalam suatu nilai tahunan (anuitas) yang seragam.

Kegunaan : Untuk mengetahui analisis sejumlah uang yang nilainya seragam setiap periodenya (nilai tahunan)
 Agar periode n dapat diperoleh, uang sejumlah F rupiah, maka berapa A yang harus dibayarkan pada akhir setiap periode dengan tingkat bunga i % ?


Rumus:

        A = i / (1 + i )N – 1  atau  A = F ( A/F, i, n)

Contoh:
Tuan sastro ingin mengumpulkan uang untuk membeli rumah setelah dia pensiun. Diperkirakan 10 tahun lagi dia pensiun. Jumlah uang yang diperlukan Rp 225.000.000,00. Tingkat bunga 12 % per tahun. Berapa jumlah uang yang harus di tabung setiap tahunnya ?

Jawab:
F = Rp 225.000.000 ; i = 12 % ; n = 10
A = F (A/F, i, n)
    =  (Rp 225.000.000) X (A/F, 12 %, 10)
    = (Rp 225.000.000) X (0,0570)
    = Rp 12.825.000
   4.      Gradient
Pembayaran yang terjadi berkali-kali tiap tahun naik dengan kenaikan yang sama atau penurunan yang secara seragam.
Kegunaan : Untuk pembayaran per periode kadang-kadang tidak dilakukan dalam suatu seri pembayaran yang besarnya sama tetapi dilakukakn dengan penambahan /pengurangan yang seragam pada setiap akhir periode.

Rumus: 

A = A1 + A2
                      A2 = G (1/i - n / (1 + i)n - 1)
                            = G (A/G, i, n)

Keterangan:
A          = Pembayaran per periode dalam jumlah yang sama
A1        = Pembayaran pada akhir periode pertama
G          = “Gradient” perubahan per periode
N          = Jumlah periode

Contoh:
Seorang pengusaha membayar tagihan dalam jumlah yang sama per periode. Perubahan per periode dengan jumlah uang sebesar Rp 30.000.000  selama 4 tahun. Dengan bunga sebesar 15 % per tahun. Berapa jumlah pembayaran pada akhir tahun pertama?

Jawab:

A2       = G (A/G, i, n)
= Rp 30.000.000 (A/G, 15 %, 4)
= Rp 30.000.000 (0,5718)
                        = Rp 17.154.000


   5.      Interest Periode
Pembayaran yang terjadi berkali-kali tiap tahun naik dengan kenaikan yang sama atau penurunan yang secara seragam.
Kegunaan : Untuk pembayaran per periode kadang-kadang tidak dilakukan dalam suatu seri pembayaran yang besarnya sama tetapi dilakukakn dengan penambahan /pengurangan yang seragam pada setiap akhir periode.

Konsep Ekuivalensi
Jumlah uang yang berbeda dibayar pada waktu yang berbeda dapat menghasilkan nilai sama (ekuivalensi) satu sama lain secara ekonomis.

Contoh Ekivalensi Nilai Tahunan

CV “Mandiri” memerlukan sebuah mesin dengan spesifikasi teknis tertentu. Ada 2 alternatif pompa yang memenuhi persyaratan yaitu mesin X dan mesin Y, dengan data-data sebagai berikut:


Bila MARR= 20% per tahun, mesin yang mana yang sebaiknya dipilih?
Penyelesaian:
- Mesin X :
P=400jt, Fsisa = 200jt, n= 8 thn, A= 90jt, i=20%
Ax = P (A/P,i%,n) + A – Fsisa(A/F,i%,n)
Ax = 400jt (A/P,20%,8) + 90jt – 200jt (A/F,20%,8)
Ax = 400jt (0,26061 ) + 90 jt – 200jt (0,06061)
Ax = 104.244.000 + 90.000.000 –12.122.000
Ax = Rp. 182.122.000

- Mesin Y :
P = 700jt, Fsisa = 400jt, A= 40jt, n=12, i=20%
Ay = P (A/P,i%,n) + A – Fsisa(A/F,i%,n)
Ay = P (A/P,20%,12) + A – Fsisa(A/F,20%,12)
Ay = 700 juta x 0,22526 + 40 juta - 400 juta x 0,02526
Ay =157.682.000 + 40.000.000 –10.104.000
Ay = 187.578.000

Keputusan :
Perbandingan EUAC :
Mesin X : Rp 182.122.000
Mesin Y : Rp. 187.578.000
Pilih Mesin X karena biayanya lebih murah.


Sumber :